Akhiezer's theorem

From HandWiki

In the mathematical field of complex analysis, Akhiezer's theorem is a result about entire functions proved by Naum Akhiezer.[1]

Statement

Let f(z) be an entire function of exponential type τ, with f(x) ≥ 0 for real x. Then the following are equivalent:

[math]\displaystyle{ f(z)=F(z)\overline{F(\overline{z})} }[/math]
  • One has:
[math]\displaystyle{ \sum|\operatorname{Im}(1/z_{n})|\lt \infty }[/math]

where zn are the zeros of f.

Related results

It is not hard to show that the Fejér–Riesz theorem is a special case.[2]

Notes

  1. see (Akhiezer 1948).
  2. see (Boas 1954) and (Boas 1944) for references.

References

  • Boas, Jr., Ralph Philip (1954), Entire functions, New York: Academic Press Inc., pp. 124–132 
  • Boas, Jr., R. P. (1944), "Functions of exponential type. I", Duke Math. J. 11: 9–15, doi:10.1215/s0012-7094-44-01102-6, ISSN 0012-7094 
  • Akhiezer, N. I. (1948), "On the theory of entire functions of finite degree", Doklady Akademii Nauk SSSR, New Series 63: 475–478